AW. [SCOI2012] 滑雪

    Type: RemoteJudge 5000ms 125MiB

[SCOI2012] 滑雪

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目描述

a180285 非常喜欢滑雪。他来到一座雪山,这里分布着 mm 条供滑行的轨道和 nn 个轨道之间的交点(同时也是景点),而且每个景点都有一编号 i (1in)i\space (1 \le i \le n) 和一高度 hih_i

a180285 能从景点 ii 滑到景点 jj 当且仅当存在一条 iijj 之间的边,且 ii 的高度不小于 jj。与其他滑雪爱好者不同,a180285 喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。

于是 a180285 拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是 a180285 滑行的距离)。

请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285 站在 11 号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?

输入格式

输入的第一行是两个整数 n,mn,m。接下来一行有 nn 个整数 hih_i,分别表示每个景点的高度。

接下来 mm 行,表示各个景点之间轨道分布的情况。每行三个整数 u,v,ku,v,k,表示编号为 uu 的景点和编号为 vv 的景点之间有一条长度为 kk 的轨道。

输出格式

输出一行,表示 a180285 最多能到达多少个景点,以及此时最短的滑行距离总和。

3 3 
3 2 1 
1 2 1 
2 3 1 
1 3 10 
3 2

提示

对于 30% 30\% 的数据,1n2000 1 \le n \le 2000

对于 100% 100\% 的数据,$ 1 \le n \le 10^5 , 1 \le m \le 10^6 , 1 \le h_i \le 10^9 , 1 \le k_i \le 10^9 $。

【A班】冲刺S 300+ 图论

Not Claimed
Status
Done
Problem
49
Open Since
2025-10-14 0:00
Deadline
2025-10-31 23:59
Extension
24 hour(s)